Dr. Senad Bulja, PhD, FIET, SMIEEE

  • Home
  • Researches
  • Workshops
  • Patents
  • Products
  • Tutorials
  • Solutions
  • Services

Researches

Home » Researches » Toward a More Generalized Doherty Power Amplifier Design for Broadband Operation

Toward a More Generalized Doherty Power Amplifier Design for Broadband Operation

Dr. Senad Bulja 04/01/2023Download Here

 

Amplifiers are essential for the correct operation of all communication systems. In addition to the requirements for their linear operation, there is also a requirement for efficiency. Usually, efficient amplifiers are not necessarily linear and the process of linearization is usually performed using a Digital Pre-Distorter (DPD) on an efficient amplifier, which distorts the input signal in a specific way to yield a linear output.  There are several amplifier efficiency enhancement techniques, however, the Doherty amplifier, introduced in 1936 [1], has been the mainstay in the telecommunications industry due to its inherent simplicity and efficiency. 

However, the conventional Doherty power amplifier (DPA) theory is limited to single carrier operations, leading to a non-generic structure. This paper presents a new analysis that generalizes the Conventional DPA (CDPA) theory for increased efficiency and bandwidth. We demonstrate that by introducing a theoretical parameter α at the output combiner, we can redefine the relationships among the output combiner elements for a greater level of design flexibility than it was possible in the CDPA. We also show that previously published works in this area can be considered as special cases of the proposed general theory. As a demonstrator, a specific design, named reduced-α DPA, realized using GaN HEMTs is provided to illustrate the robustness of the approach. This design proves effective for further improving the performance of the previously published 2.14-/2.655-GHz dual-band parallel DPA. A maximum drain efficiency of 84% and 67% at an average of 43-dBm peak and 6-dB back-off power levels, respectively, was measured with continuous wave signals. To quantify the linearity performance, the proposed DPA was tested using wideband CDMA and long-term evolution signals where the adjacent channel leakage ratio was recorded at -25 dBc with an average output power of 38.7 and 36.5 dBm at 2.14 and 2.655 GHz, respectively. 

Fig.1 Fabricated circuit prototype of proposed reduced-α DPA
Fig.1 Fabricated circuit prototype of proposed reduced-α DPA

Download more

Chia sẻ0
Tweet
Chia sẻ

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Other Posts

Fig. 1 Perspective view of the structure of measurement LC cell

Characterisation and application of nematic liquid crystals in microwave devices

In-Vessel Resonant Communications

Performance Estimation of In-Vessel Resonant Communications

Profile & Bio

Senad Bulja, Ph.D., FIET, SMIEEE 

  1. Dr Bulja’s profile
  2. Email : contact@drbulja.com

PROFESSIONAL Profile

  • Accomplished career of over 19 years demonstrating consistent success as a Researcher, Leader and Mentor in the Wireless industry research environment.
  • Excellent Scientific contributions in the field of RF, EMC and telecommunications with 4 Nature Journal publications and over 70 peer-reviewed articles and conference papers
  • Strong leadership skills demonstrated by leading Ph.D. level educated cross-continental and cross-departmental teams to successful project execution.  
  • Proven Strategic Business Impact – introduced own developed technology into Nokia’s future technology roadmap (RF filters) and business transfer of the smart surface technology. 
  • Creative, internationally awarded and well-driven inventor with over 70 filed patents in the area of hardware for Radio Frequency (RF), Wireless Sensor Networks (WSN), Internet of Things (IoT) and wireless systems architectures. E.g. Nokia patent award entitled: “A top inventor in implementation patent first filings”, 2020.
  • Significant contribution in the identification of high revenue IP assets and leadership on the creation of Nokia’s patent portfolio roadmap. 
 

© Copyright 2023 drbulja.com. All Rights reserved