Dr. Senad Bulja, PhD, FIET, SMIEEE

  • Home
  • Researches
  • Workshops
  • Patents
  • Products
  • Tutorials
  • Solutions
  • Services

Workshops

Home » Workshops » RF and mm-wave filters

RF and mm-wave filters

Dr. Senad Bulja 19/09/2024Download Here

Filters are essential to virtually all communication systems. Even though the fundamental principles of the operation of filters have been known since the second part of the 20th century, practical filter design still draws a great deal of attention from RF engineers and academia. Such is the significance of filters. 

Of particular importance to modern filter design is not only excellent electrical performance, but also size and volume. This is principally true for filters operating at the lower end of the frequency spectrum (e.g., 700 MHz), where their physical volume and weight pose significant challenges to network equipment manufactures. In this regard, the need for excellent electrical performance inevitably increases the filter size. Consequently, RF filters tend to occupy a significant volume of a number of communication devices. In particular, cavity filters are still the mainstay in mobile cellular communication base stations, by virtue of their power-handling capabilities, cost effectiveness, good electrical performance (medium to high quality factor) and technological maturity. However, the attractive features of cavity filters are counterbalanced by an increased physical size and, equally importantly, weight. The bulky size can be alleviated at the expense of reduced electrical performance. For example, capacitive loading and a stepped resonant post are often deployed to reduce resonator profile, albeit at the expense of performance. Helical resonators can also be used to address the issue of bulky size. 

 

The frequency range of filters that my work focuses on is from 1 GHz to 150 GHz. Of particular importance to the filter design of my work is miniaturization with little or no impact on performance. As evidenced in my broad patent and publication portfolio, I have contributed to the knowledge and applications of a wide range of filters – from cavity to ceramics.  

Fig. 1. Designed 3-pole distributed filter – housing not shown for clarity.
Fig. 1. Designed 3-pole distributed filter – housing not shown for clarity.

Chia sẻ0
Tweet
Chia sẻ

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Other Posts

RF phase shifters

Fig.1 Fabricated circuit prototype of proposed reduced-α DPA

RF amplifiers

3.5 GHz filter

3.5 GHz filter, LTE, band 42

Profile & Bio

Senad Bulja, Ph.D., FIET, SMIEEE 

  1. Dr Bulja’s profile
  2. Email : contact@drbulja.com

PROFESSIONAL Profile

  • Accomplished career of over 19 years demonstrating consistent success as a Researcher, Leader and Mentor in the Wireless industry research environment.
  • Excellent Scientific contributions in the field of RF, EMC and telecommunications with 4 Nature Journal publications and over 70 peer-reviewed articles and conference papers
  • Strong leadership skills demonstrated by leading Ph.D. level educated cross-continental and cross-departmental teams to successful project execution.  
  • Proven Strategic Business Impact – introduced own developed technology into Nokia’s future technology roadmap (RF filters) and business transfer of the smart surface technology. 
  • Creative, internationally awarded and well-driven inventor with over 70 filed patents in the area of hardware for Radio Frequency (RF), Wireless Sensor Networks (WSN), Internet of Things (IoT) and wireless systems architectures. E.g. Nokia patent award entitled: “A top inventor in implementation patent first filings”, 2020.
  • Significant contribution in the identification of high revenue IP assets and leadership on the creation of Nokia’s patent portfolio roadmap. 
 

© Copyright 2023 drbulja.com. All Rights reserved